waag society

institute for art, science and technology

Principles of Electronics

LITHIUM ATOM

Con

NEGATIVE ION
\qquad
\qquad

POSITIVE ION
\qquad
\qquad
\qquad

\qquad
\qquad

0
 A circuit

What is a circuit?
It's a CLOSED LOOP that electrons can travel in.

Electrons flow = Current

How can I generate a current?
The simplest circuit is
BATTERY + RESISTOR

Battery

The battery is the power supply of out circuit. It has two sides:

+ / plus: VCC, $\mathrm{V}_{+},+\mathrm{V}$
- / minus: GND

Unit of measure: Volt (V).

Voltage: It's the difference between two points

0
 Batteries \& power supplies

From the grid (220V) to 12 V (the output that be different), $\mathrm{VCC}=12 \mathrm{~V}$.

(4) Resistor

It has two sides, it doesn't matter the orientation.
Unit of measure: Ohm (Ω).

(4) The simplest circuit

Voltage: is the difference in charge between two points.
Current: is the rate at which charge is flowing.
Resistance: is a material's tendency to resist the flow of charge (current).

1) No Slope $=$ No Motion

2) Slope = Motion without

(4) The simplest circuit

0
 The simplest circuit - OHM'S LAW

$$
\begin{gathered}
\text { Ohm's Law } \\
\begin{array}{c}
\Delta \mathrm{V}=(\mathrm{V}+)-(\mathrm{V}-)=\mathrm{R}^{*} \mathrm{I} \\
\mathrm{~V}=\mathrm{RI}
\end{array} \\
\mathrm{~V}=\mathrm{RI} \Rightarrow \quad \mathrm{I}=\mathrm{V} / \mathrm{R} \\
\mathrm{R}=\mathrm{V} / \mathrm{I}
\end{gathered} .
$$

Ex 1: Calculate Current you need
$\mathrm{V}=9 \mathrm{~V}$
$\mathrm{R} 1=1 \mathrm{k} \Omega=1000 \Omega$
$\rightarrow \mathrm{I}=\mathrm{V} / \mathrm{R}=(\mathrm{VCC}-\mathrm{GND}) / \mathrm{I}=(9 \mathrm{~V}-0 \mathrm{~V}) / 1000 \Omega=0.009 \mathrm{~A}(=9 \mathrm{~mA})$
Ex 2: Calculate Resistor you need
$\mathrm{V}=3 \mathrm{~V}$
$\mathrm{I}=20 \mathrm{~mA}$
$\rightarrow \mathrm{R}=\mathrm{V} / \mathrm{I}=3 \mathrm{~V} / 20 \mathrm{~mA}=3 \mathrm{~V} / 0.02 \mathrm{~A}=150 \Omega$

(4) The simplest circuit - POWER

$$
\begin{gathered}
P=V I \\
V=R I \Rightarrow \quad P=\left(R^{*} \mid\right)^{\star} I \\
=\left.R^{*}\right|^{2}
\end{gathered}
$$

When the power is higher then the power specified in the specs of the component:
The device burns.
Ex:

$$
\begin{aligned}
& P=9 \mathrm{~V} * 0.05 \mathrm{~A}=0.45 \mathrm{~W} \\
& (I=5 \mathrm{~mA} \Rightarrow \mathrm{R}=9 \mathrm{~V} / 0.005 \mathrm{~A}= \\
& 1800 \Omega=1.8 \mathrm{k} \Omega)
\end{aligned}
$$

The simplest ciruit Plus KIRCHOFF'S LAW

(1)

(4) In Series - In Parallel

(H) In Series - In Parallel

0 The simplest circuit + Switch

Note: place the switch to the high Voltage

(L) The simplest circuit + LED

(a) rgb led

Three LEDS in one

(4) Components - Capacitor

Capacitor: energy storage. The current doesn't flow through the capacitor.

Prefix Name	Abbreviation Weight	Equivalent Farads	
Picofarad	pF	10^{-12}	0.000000000001 F
Nanofarad	nF	10^{-9}	0.000000001 F
Microfarad	$\mu \mathrm{F}$	10^{-6}	0.000001 F
Milifarad	mF	10^{-3}	0.001 F
Kilofarad	kF	10^{3}	1000 F

0
 Components - Diode

ferent types of diodes, each of which has a special riff on the standa lugment the diode symbol with a couple lines pointing away. Photoc y, tiny solar cells), flip the arrows around and point them toward the

des, like Schottky's or zeners, have their own symbols, with slight ve

(4) Schematic

The schematic is the symbolic representation of a circuit

(4) How to read a Schematic

Names: Component names are usually a combination of one or two letters and a number. Ex: R1, R2.
The prefixes of names are pretty well standardized.

Name Identifier	Component
R	Resistors
C	Capacitors
L	Inductors
S	Switches
D	Diodes
Q	Transistors
U	Integrated Circuits
Y	Crystals and Oscillators

Values: help define exactly what a component is.

$\frac{1}{G N D} \sum_{G N D} \frac{1}{A G \bar{N} D}$

How to read a Schematic - Nets \& Junctions

(A) Tinkering Time

