

Principles of Electronics

NEGATIVE ION

POSITIVE ION

What is a circuit? It's a **CLOSED LOOP** that electrons can travel in.

Electrons flow = Current

How can I generate a current? The simplest circuit is BATTERY + RESISTOR

The battery is the power supply of out circuit. It has two sides:

- + / plus: VCC, V+, +V
- / minus: GND
- Unit of measure: Volt (V).

	T
Voltage:	+
It's the	U
difference	ARU
etween two	GET
points	

From the grid (220V) to 12V (the output that be different), VCC = 12V.

It has two sides, it doesn't matter the orientation. Unit of measure: Ohm (Ω).

Voltage: is the difference in charge between two points.

Current: is the rate at which charge is flowing.

Resistance: is a material's tendency to resist the flow of charge (current).

The simplest circuit – OHM'S LAW

$$\Delta V = 9V (for all the second secon$$

Ohm's Law

$$\Delta V = (V+) - (V-) = R*I$$

$$V = RI$$

$$V = RI => I = V/R$$

$$R = V/I$$

Ex 1: Calculate Current you need V = 9V $R1 = 1k\Omega = 1000\Omega$ $\rightarrow I = V/R = (VCC - GND) / I = (9V - 0V)/1000\Omega = 0.009 A (= 9 mA)$

Ex 2: Calculate Resistor you need V = 3V I = 20mA $\rightarrow R = V/I = 3V/20mA = 3V/0.02A = 150\Omega$

The simplest circuit - POWER

$$\Delta V = 9V \begin{pmatrix} \downarrow \\ \downarrow \\ \downarrow \\ \end{bmatrix} (current)$$

GND = V- = 0V

Power Unit of measurment: Watt (W)

> V = RI => P = (R*I)*I = R*I²

P = VI

When the power is higher then the power specified in the specs of the component: The device burns.

Ex:

P = 9 V * 0.05 A= 0.45 W

$$(I = 5mA \Rightarrow R = 9V / 0.005A = 1800 \Omega = 1.8 k\Omega)$$

Datasheets	Chip Resistor Marking RC Series, L Suffix Datasheet	
Product Photos	1206 Chip Resistor, SMT	
Product Training Modules	Chip Resistor	
PCN Other	RC/AC 0603/0805/1206 22/Jan/2013	
Standard Package 🕜	1	
Category	Resistors	
Family	Chip Resistor - Surface Mount	
Series	<u>RC1206</u>	
Packaging 🕜	Cut Tape (CT) 👔	
Resistance (Ohms)	10k	
Tolerance	±1%	
Power (Watts)	0.25W, 1/4W	
Composition	Thick Film	
Features	Moisture Resistant	

The simplest ciruit Plus – KIRCHOFF'S LAW

Example schematic with four uniquely colored nodes.

III STATES STRAIG

Note: place the switch to the high Voltage

Ohm's Law doesn't work!

Forward Voltage (Vf)Is the voltage at the sides of theLED when there is currerthrough it.Current (If)It's the maximum current that

you fix.

Three LEDS in one

RGB

Capacitor: energy storage. The current doesn't flow through the capacitor.

Prefix Name	Abbreviation	Weight	Equivalent Farads
Picofarad	pF	10 ⁻¹²	0.00000000001 F
Nanofarad	nF	10 ⁻⁹	0.00000001 F
Microfarad	μF	10 ⁻⁶	0.000001 F
Milifarad	mF	10 ⁻³	0.001 F
Kilofarad	kF	10 ³	1000 F

ferent types of diodes, each of which has a special riff on the standa augment the diode symbol with a couple lines pointing away. **Photoc** y, tiny solar cells), flip the arrows around and point them toward the

des, like Schottky's or zeners, have their own symbols, with slight va

The schematic is the symbolic representation of a circuit

Names: Component names are usually a combination of one or two letters and a number. Ex: R1, R2.

The prefixes of names are pretty well standardized.

R1

Name Identifier Component R Resistors С Capacitors L Inductors S Switches D Diodes Transistors Q U Integrated Circuits Υ Crystals and Oscillators

Values: help define exactly what a component is.

How to read a Schematic – Nets & Junctions

some rights reserved

CC

my 75 Join And Lov